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ABSTRACT: The melting transition of bulk and confined Stockmayer fluids (μ2

= 1) is analyzed using molecular dynamic simulations. The solid−liquid
coexistence temperature is evaluated using a modified three-stage pseudo-
supercritical transformation path. The bulk melting temperature calculated using
the aforementioned method agrees well with the literature value. Melting
temperatures of the Stockmayer fluid confined in Lennard-Jones (LJ) 9−3 slit
pore of pore size, H, varying from 6 to 20 molecular diameters are reported. For
H ≤ 12 molecular diameters, the shift in the melting temperature for the
Stockmayer fluid is oscillatory in nature with the inverse of the pore size.
However, for higher H the shift in melting temperature obeys the Gibbs−
Thomson equation. The thermodynamic melting temperatures of the Stock-
mayer fluid under confinement, for variable pore sizes, are found to be usually
higher than that of the bulk fluid. The structural and orientational order
parameters are also presented, which suggest similarity in the structures of
confined LJ and confined Stockmayer fluids.

1. INTRODUCTION

Fluids with dipolar interactions are abundant in nature and
industry. Ferrofluids (FFs), magnetorheological (MR) fluids,
electrorheological (ER) fluids, and polar fluids1−3 such as water,
methanol, chloroform, acetonitrile, aniline, nitrobenzene are the
most commonly found dipolar fluids. The magnetic and electric
properties of dipolar fluids find widespread application in
various fields.4−6 Numerous theoretical works have described
the structures and phase behavior of dipolar fluids.7−14

The Stockmayer model is a representative model of dipolar
fluids that consists of a short-range Lennard-Jones (LJ)
interaction and a long-range anisotropic dipole−dipole
interaction. The vapor−liquid thermodynamic properties of
the dipolar fluids, such as phase equilibria and interfacial
properties, have been demonstrated by earlier workers,15,16

while few studies have reported on the freezing transition.17−19

Most of the molecular simulation works on dipolar fluids, until
date, have dealt with vapor−liquid systems. Studies on solid−
liquid thermodynamics properties for dipolar systems are
scarce. Recently, the solid−liquid interfacial properties of
Stockmayer fluids have been presented using the cleaving
wall method.20−22 Further, the freezing temperature of
Stockmayer fluid is evaluated, for different dipole moments,
based on the potential energy discontinuity method by Wang et
al.20 The authors employed the maximum superheating and
undercooling technique originally proposed by Luo et al.23

Most of the work on the dipolar system pertains to the bulk
phase. Comparatively, the effect of confinement on the solid−
liquid transition of dipolar fluids has not been studied much,
particularly using molecular simulation.24

Understanding the properties of nanoconfined dipolar fluids
is of immense importance in various areas related to lubrication,
microfluidics, adhesion, fabrication of nanomaterials, and

nanotribology. Hence, numerous experiments have been
performed on the phase transitions of confined dipolar fluids.
For example, the surface-induced phase-transition of dipolar
polystyrene confined between mica surfaces, from liquid-like to
solid-like, by reducing the wall separation has been investigated
by Klein et al.25−27 using surface force apparatus. The melting/
freezing transition for a strongly dipolar fluid, such as
nitrobenzene confined in CPG of different pore sizes, has
also been examined recently using differential scanning
calorimetric (DSC) and dielectric relaxation spectroscopy by
Sliwinska-Bartkowiak et al.28

In most of the cases, previous workers have employed
density functional theory,29−31 perturbation theory,32 or a
hysteresis method20,23 to compute the solid−liquid transition
point of dipolar systems. Recently, independent methods have
been proposed for the determination of freezing temperature of
dipolar fluids, namely the superheating-undercooling method
(hysteresis method) and the coexistence solid−liquid method
in the NPT and NPH ensembles.20 Previously, Dominguez and
co-workers estimated the free energy of the LJ liquid and solid
phases under confinement in order to find the melting point.
The authors adopted a method to evaluate the free energy by
thermodynamic integration where the wall−fluid interaction
was turned off along a thermodynamic path. However, the
authors have reported difficulty in finding a reversible
thermodynamic path for moderately or strongly attractive
walls.19 Hence, the method adopted by the authors was found
to be suitable only for weakly attractive walls. In our recent
works, we have avoided the procedure of turning off the wall−
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fluid interaction to find the absolute free energy of the confined
phases. Instead, we implemented the three-stage pseudo-
supercritical path, along with the multiple histogram reweight-
ing (MHR) technique, for the determination of the Gibbs free
energy difference of confined solid and liquid phases to evaluate
the melting temperature of LJ systems in slit33 and cylindrical
pores.34

In this work, we extend the aforementioned method for
Stockmayer fluids to achieve a better understanding of the
melting transition of Stockmayer fluids under confinement and
to investigate the relation between the pore size and the shift in
the melting temperature of a confined dipolar fluid. The rest of
the article is structured as follows. The model and method are
described in section 2. Section 3 presents the simulation details,
and in section 4 the results are presented and discussed. Finally,
concluding remarks are presented in section 5.

2. MODEL AND METHODS
2.1. Potential Model. The dipolar fluids are represented by

the Stockmayer potential that consists of Lennard-Jones
potential along with a pointlike permanent dipole. The
potential model, for the fluid−fluid interaction, is given by

= +−U U USM ff
tr sh

dd (1)
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where σff is the particle diameter, εff is the interaction well
depth, and r is the distance between two particles. μi is the
dipole moment of ith particle, and rij denotes the vector
connecting the ith and jth particles. All quantities are reduced
with respect to εff and σff. The cutoff radius, rc, is fixed at 2.6σff.
The dipole−dipole long-range interaction is treated using the
Ewald summation technique.35,36 We have kept the dipole
moment, in this work, fixed at μ2 = 1.
In this work, the interaction between the structureless wall

and a fluid particle at distance z is defined by the LJ9-3
potential.37 The potential form is as follows
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where ρw is the number density of atoms in the wall, and the
subscripts f and w represent fluid and wall, respectively. σwf and
εwf are the cross parameters for the wall−fluid interaction. In
this work, we fix σff = 1, εff = 1, σww = 0.8924, εww = 0.1891, ρw
= 6.3049, σwf = (σff + σww)/2 and εwf = (εffεww)

0.5. The strength
of interaction of the wall−fluid relative to the fluid−fluid
interaction is defined by the coefficient α = ρwεwfσ

3
wf/εff, which

is fixed at 2.32. The slit pore width, H, is varied from 6 to 20
molecular diameters. The cut-off radius for the wall−fluid
interaction is fixed at 5σff. In this work, all quantities are
reduced with respect to σff and εff.
For a particular pore width, H, the total potential energy is

given by

∑φ φ φ= + −
=

z H z[ ( ) ( )]
i

N

i ipore
1

fw fw
(3)

where, zi is the distance of a molecule perpendicular to a pore
wall, H is the distance between the two pore walls, and N is the
number of particles.

2.2. Simulation Methodologies. In this work, we adopt
an approach based on the free energy analysis to determine the
solid−liquid coexistence of the Stockmayer fluid, which consists
of four steps: (a) estimation of the approximate melting point
from density−temperature hysteresis curve; (b) computation of
equation of state for the solid and liquid phases using the
multiple histogram reweighting method at a reference state
point; (c) determination of difference in the free energy
between solid and liquid phases at an approximate melting
temperature using the pseudo-supercritical transformation path;
(d) evaluation of the melting temperature is done using the
steps (b) and (c), where Gibbs free energy is zero. Each step is
described in detail elsewhere;33,38however, for completeness we
provide a brief summary below.

2.2.1. Estimation of an Approximate Melting Point. At
first, solid and liquid phases independently are heated and
quenched, respectively, using an isothermal−isobaric ensemble,
NPxx (= Pyy)HT, at Pxx = Pyy = 1.0. The density of the liquid
phase gradually increases during the cooling cycle, and at a
certain temperature the density rises sharply. In case of the
heating cycle, the density decreases gradually at the initial stage,
and at a particular temperature it drops sharply. An
approximate melting temperature is located within the
hysteresis loop.

2.2.2. Solid and Liquid Equation of State. The aim of this
step is to construct the Gibbs free energy curves as a function of
temperature for both the solid and liquid phases at a constant
pressure. The melting temperature is evaluated at which the
Gibbs free energy difference between the two phases is zero.
The major trouble lies in the calculation of the absolute free
energy, which cannot be measured directly from molecular
simulation. However, the derivative of the free energy can be
estimated with respect to temperature or pressure, which can be
integrated to produce the free energy of the system. These
curves of free energy plus an unknown constant will be referred
to as pure-phase relative free energy curves, since the constant
of integration acts as a reference state. The reference state is
specific for the given phase.
The selection of temperature range for generation of the free

energy curves should be over a small temperature range around
the hysteresis loop region. This is performed using the multiple
histogram reweighting (MHR) technique of Ferrenberg and
Swendsen,39,40 as elucidated elsewhere.39−44The complete
detail of its implementation for slit pores can be found in ref 33.
In this work, we perform two separate sets of simulations for

the liquid and solid phases. The free energy curves for liquid
and solid phases are constructed from histograms, with respect
to different reference state points. With the help of free energy
difference between the two phases at the approximate melting
temperature, the pure phase relative free energy curves can be
converted to a solid−liquid free energy difference as a function
of temperature. The curves allow estimation of the temperature
where free energy is equal for both the solid and liquid phases.

2.2.3. Determination of the Solid−Liquid Free Energy
Difference at the Approximate Melting Temperature. The
estimation of Helmholtz free energy difference between the
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solid and liquid phases, at an approximate melting temperature,
was conducted according to a modified form of the three-stage
pseudo-supercritical thermodynamic transformation path.45

The transformation method was developed on the basis of a
reversible thermodynamic path construction between the solid
and liquid phases through one or more intermediate states. In
order to compute the free energy along the pseudo-supercritical
path, a standard thermodynamic integration procedure was
used. The fundamental equation for thermodynamic integration
is

∫Δ =
λ

λ
λ

A
Ud

d
dex

NVT (4)

where ΔAex is the difference in the excess Helmholtz free
energy and λ is the integration path variable. ⟨dU/dλ⟩NVTλ
indicates the NVT ensemble average for a particular value of λ.
Typically, λ is varied from 0 to 1 with λ = 0 state acting as a
reference state. The Helmholtz free energy can be converted to
the Gibbs free energy by the addition of a pressure−volume
term. The volume changes throughout the three-stage trans-
formation path. In order to estimate the free energy difference
between solid and liquid phases, the phases are connected
through one or more intermediate states without the first-order
phase transition among them. Figure 1 represents the schematic
diagram of three-stage pseudo-supercritical path for bulk and
confined systems. Though the pseudo-supercritical trans-
formation pathway is described in our earlier work,33 the
three-stage method is briefly described here for better clarity of
the work.
2.2.3.1. Stage a. The goal of first step of the pseudo-

supercritical path is the conversion of fully interacting liquid to
weakly interacting fluid. This is accomplished through a
coupling parameter λ, which scales intermolecular interactions
in the following manner

λ λ η μ φ= − − + +U U r U r( ) [1 (1 )]( ( ) ( , ))N N N
a inter dd fw

(5)

where Uinter(r
N) is the intermolecular potential energy based on

the positions of all N particles, Udd(r
N,μN) is the potential

energy due to the long-range dipole−dipole interaction. φfw
represents potential energy due to the wall−fluid interaction
which is independent of coupling parameter, and η is a scaling
parameter such that 0 < η < 1. The derivative of this function is
given by

∂
∂λ

η μ= − − +
U

U r U r(1 )( ( ) ( , ))N N Na
inter dd (6)

2.2.3.2. Stage b. In the second stage, the simulation box
volume is decreased from the liquid volume to the solid
volume. To bring back the liquid particles to the lattice points
corresponding to the solid phase, Gaussian attractive potential
wells are introduced. These wells are situated at the lattice
points of the crystalline phase. The box dimensions along the
nonconfined dimensions (Lz) of the liquid and solid phases
must be known, either from the MHR results or from
isothermal−isobaric simulation runs, at the apparent melting
temperature. This ensures that the liquid- and solid-phase
pressures are equal at the beginning of stage a and at the end of
the transformation path. The potential energy based on λ for
this stage is

λ η λ λ μ

λ λ λ φ

= +

+ +

U U r U r

U r r

( ) ( [ ( )] [ ( ), ])

[ , ( ), ( )]

N N N

N N
b inter dd

Gauss well fw (7)

where, rN(λ) and rwell
N(λ) are the Cartesian coordinates of the

particles and potential wells, respectively, which is a function of
λ due to the changing box volume. UGauss represents the
potential energy due to the interaction between Gaussian

Figure 1. Schematic representation of the three-step pseudo-supercritical transformation path for the bulk (panel a) and confined system (panel b).
Red spot on the particle indicates randomly oriented resultant dipole moment. Stage a: the liquid phase is converted to a weakly interacting fluid by
gradually reducing the intermolecular interactions and dipole−dipole interaction. Stage b: the Gaussian potential wells are turned on while the
volume is reduced to produce a weakly interacting ordered phase. Stage c: the Gaussian wells are turned off while simultaneously intermolecular
interactions and dipole−dipole interactions are gradually restored to achieve a crystalline phase.
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potential wells and particles. The box dimension is modified
from the solid volume to the liquid volume, as per the
procedure described in our earlier work.33

2.2.3.3. Stage c. This is the final stage of the pseudo-
supercritical transformation path where the Gaussian potential
wells are removed. The potential energy function of this final
stage as a function of λ is

λ η η λ μ

λ φ

= + − +

+ − +

U U r U r

U r r

( ) [ (1 ) ]( ( ) ( , ))

(1 ) [ , ]

N N N

N N
c inter dd

Gauss well fw (8)

and the derivative is given by

∂
∂λ

η μ= − +

−

U
U r U r

r r

(1 )[ ( ) ( , )]

U ( , )

N N N

N N

c
inter dd

Gauss well (9)

2.2.4. Finding the Temperature Where ΔG Is Zero. The
difference in the excess Helmholtz free energy of solid and
liquid phases, As − Al = ΔAex = −(ΔAa + ΔAb + ΔAc) can be
converted to the Gibbs free energy difference ΔG = ΔAex +
ΔAid + PΔV, using a simple correlation as mentioned in our
earlier work.33 Here, ΔAa, ΔAb, and ΔAc are the corresponding
Helmholtz free energy changes along the stages a, b, and c,
respectively. Additionally, the histogram reweighting analysis
yields two free energy curves. These free energy curves are used
to determine the free energy difference between solid and
liquid phases over a small range of temperatures. These curves
are also converted with respect to a single reference state
point.33 Finally, the melting temperature is determined where
the Gibbs free energy difference is zero.

3. SIMULATION DETAILS
In this work, molecular dynamics simulations are performed
using LAMMPS.46 The velocity−verlet algorithm is used to
integrate the equation of motion. The reduced time step is fixed
to 0.004. The temperature and pressure are controlled using a
Nose−́Hoover thermostat and Anderson barostat,47 with
relaxation time steps of 8 × 103 and 2 × 104 for temperature
and pressure, respectively. H is varied from 6 to 20 molecular
diameters. Approximately 4600−15000 particles are used to run
the simulations. The periodic boundary condition is employed
in the X and Y directions of the pore. The pressures along the
periodic dimensions are kept fixed. The volume of the confined
fluid, for the calculation of densities, is evaluated on the basis of
the effective Z dimension: V = (Lz − σwf)LxLy.
First, an approximate melting temperature, Tam, is

determined by performing two different types of NPxx (=Pxx)
HT simulations. The cooling and heating simulations are
performed in a step-by-step procedure after each 3.0 × 106 MD
time step with Δt of 0.004 in reduced unit (τ), which is defined
as t(ε/mσ2)1/2. In the case of cooling simulations, T is gradually
reduced in steps of 0.025 from 1.2 to 0.3, whereas T is
increased in steps of 0.025 from 0.3, for heating simulations,
until the solid completely loses its crystallinity. The error in the
density is estimated using the block averaging method. The
histograms for MHR are collected from molecular dynamics
simulations at various temperatures. The temperature is chosen
according to the following relationship

∑= + Δ
=−

T T n Ti
n

am
4

4

where Tam is the approximate melting temperature estimated
from the hysteresis data; ΔT is chosen in accordance with the
metastable region. At each temperature an equilibration run of
2 × 105 MD steps is performed followed by a production run of
3 × 106 MD steps.
The thermodynamic integration calculations along the three-

stage pseudo-supercritical path are conducted using NVT
molecular dynamics. For each integration stage, 10 simulations
are conducted, with the values of λ chosen according to the
standard 10-point Gauss−Legendre integration scheme. The
Gaussian potential well parameters are taken from the work of
Grochola.38,45

At the first stage of the transformation path, simulations are
started from a random initial configuration (i.e., λ = 0), which is
obtained during the hysteresis runs. Subsequently, each λ initial
configuration is taken from its previous λ simulation, and the
total time steps for each λ is 5 × 106. For the second stage,
stage b, the last configuration of the stage a is used as the initial
configuration. However, to obtain the final configuration we
put dummy atoms on the crystal lattice point obtained from the
heating run. The Gaussian potential wells are attached to these
dummy atoms. The simulation box dimensions Lx and Ly are
reduced accordingly to λ values which are already derived in
our earlier work.33 The initial configuration for the third stage is
taken from the heating run of hysteresis loop at Tam, and the
dummy atoms are created as described for the second stage.
Separate sets of simulations are conducted as per Eike et al.38 to
determine the thermodynamic melting temperature of the bulk
dipolar fluid at P = 0 and P = 1. The error in the melting
temperature is calculated from the propagation of error method
associated with the value of integrand. The error in integrand is
calculated using the block averaging method.

4. RESULTS AND DISCUSSION
4.1. Bulk Stockmayer Fluid. We start our discussion with

the bulk Stockmayer fluid at P = 0. Figure 2 shows a plot of the
density as a function of the temperature for both the quenching
and heating cases. As the liquid is quenched, the density
gradually increases and at a certain temperature the density
rises sharply. In case of a heating run of the solid phase, the

Figure 2. Density as a function of temperature for solid and liquid
phases at zero pressure. Symbols square and circle represent
quenching and heating cycles, respectively. The solid (top curve)
progressively heated from T = 0.3 to 0.725 until complete loss of
crystallanity, while the liquid (bottom) is quenched progressively from
T = 1.2 to 0.3. Vertical dash line indicates an approximate melting
temperature(Tam). Horizontal dash lines indicate corresponding
densities of solid and liquid at Tam.

The Journal of Physical Chemistry C Article

dx.doi.org/10.1021/jp503044v | J. Phys. Chem. C 2014, 118, 20848−2085720851



density decreases and at a particular temperature the density
drops sharply. The hysteresis loop, as shown in Figure 2,
indicates a first-order phase transition. A wide metastable
region is observed around the true phase-transition point. The
true melting point is adjacent to the metastable region. Figure 2
clearly shows that abrupt density change or a discontinuous
drop in density occurs at T = 0.70, which indicates that the true
thermodynamic melting temperature would be lower than this
temperature. In Figure 2, the vertical dashed line represents the
approximate melting temperature Tam = 0.60, at which the free
energy difference between solid and liquid phases is evaluated
using the pseudo-supercritical transformation path. The solid
and liquid box lengths are determined from the corresponding
densities as shown by the horizontal dotted lines.
The Gibbs free energy curves are constructed taking T = 0.60

as an intermediate point of the metastable region. As described
in the methodology section, simulations are performed at nine
different temperatures. For each temperature, two sets of
simulations are performed: one for the heating case and
another one for the quenching case, resulting in 18 histograms.
The relative Gibbs free energy curves for both phases are
generated independently by collecting the histograms for the
solid and the liquid phases. The Gibbs free energy curves are
constructed with respect to the lowest temperature state point
for each phase. Figure 3 presents the Gibbs free energy curves

for the solid and the liquid phases with respect to their
respective reference state. The next step is the evaluation of the
Gibbs free energy difference between the two phases at an
approximate melting temperature.33

The thermodynamic integration is performed at Tam along
the pseudo-supercritical path, through which solid and liquid
phases are connected avoiding the first-order phase transition
(see Figure 1). The box lengths for solid and liquid phases are
determined from their respective densities as shown by
corresponding horizontal lines in Figure 2. The box lengths
are chosen in such a way that pressure remains constant at the
beginning of the stage-a and at the end of the stage-c.33 Plots of
⟨∂U/∂λ⟩NVTλ as a function of λ for three stages of
thermodynamic integration are shown in Figure 4. Figure 4
shows that curves are continuous and integrable for all the three
steps. In the case of the bulk fluid, we have followed the
method as per Eike et al.38 Table 1 summarizes the various
contributions to the Gibbs free energy difference.

Once the Gibbs free energy difference of two phases is
determined at an approximate melting temperature, it is no
longer difficult to convert the liquid Gibbs free energy curve
relative to a solid reference state as shown in ref 33. The two
Gibbs free energy curves with respect to a single reference state
point are shown in Figure 5. Using the relative free energy
between the crystalline and liquid phases at a single point, the
free energy difference between crystalline and liquid phases can
be evaluated for all other points. By determining ΔG in this way
over a range of temperatures, a ΔG vs temperature curve can be
produced, and the temperature where this curve is zero
produces a single coexistence point or the thermodynamic
melting temperature. The coexistence temperature calculated
using the above-mentioned method is 0.660(6).48 Our
calculated value at zero pressure is consistent with that of
Wang et al.20 We have also evaluated the melting temperature
of bulk dipolar LJ system at P = 1, using the three-stage
pseudocritical transformation path along with MHR. The
melting temperature obtained at P = 1 (see Table 1) is
0.674(5), which is little higher in comparison to the case of
zero pressure.

4.2. Stockmayer Fluid in Slit Pore. Now, we turn our
attention on the effects of confinement on the melting
temperature of a Stockmayer fluid. In our previous note, we
have reported the thermodynamics melting temperature of a
Lennard-Jones solid in slit pore.33The melting temperatures for
larger slit pores were found to obey the Gibbs−Thomson
equation, ΔTf = Tf,pore − Tf,bulk = −2[(γws − γws)v/(Hλf,bulk)].
Where, the shift in the freezing/melting temperature ΔTf is
related to the inverse of the pore width H; γws and γwf are the
wall−solid and wall−fluid surface tensions, ν is the molar
volume of the liquid phase, and λf, bulk is the bulk latent heat of
melting. Interestingly, for narrow pores the melting temper-
atures of confined LJ solids were found to be oscillatory in
nature. However, it is not yet known if such behavior holds also
for complex fluids. In order to address the question, in this
work we consider the case of confined Stockmayer fluids. We
have chosen a strongly attractive LJ9-3-based slit pore, with a
relative wall−fluid strength of α = 2.32 as employed in a
previous work,33 for a suitable comparison between the

Figure 3. Relative Gibbs free energy curves as a function of
temperature for bulk dipolar fluid at zero pressure relative to their
respective reference state, constructed from MHR.

Figure 4. ⟨∂U/∂λ⟩NVTλ as a function of λ for the three-stage pseudo-
supercritical transformation path for the bulk dipolar system at zero
pressure.
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Stockmayer fluid and the LJ fluid. Pore size is varied from 6 to
20 molecular diameters. We observe that the determination of
melting temperature of dipolar system using kinetic approach is
not feasible unlike for Lennard-Jones fluids.48 Hence, we adopt
thermodynamic approach for confined Stockmayer fluids, using
the pseudocritical transformation method, to evaluate the
solid−liquid coexistence under confinement. As previously
mentioned, the first step in evaluating the true thermodynamic
melting temperature is to determine an approximate melting
temperature. We first calculate the overall density of the
confined system along the quenching and heating paths, which
shows that at T = 0.85 density drops sharply. Similar to the
earlier case, we choose an approximate melting temperature
lower than the above value, Tam = 0.80.
Figure 6 (a, top) presents the local density for various

temperatures during the quenching run. At higher temper-
atures, the peak heights of the layers are not pronounced.
However, with decrease in the temperature the peak-height
increases, and sharp distinct peaks are observed at T = 0.75
indicative of the solid phase. From the change in the peak-
height and shape, one can distinguish between the solid and
liquid phases, and also estimate the melting temperature
approximately. Figure 6 (b, bottom) shows the typical density
profiles for the solid and liquid phases at Tam = 0.80. However,
determination of the true thermodynamics melting transition
point requires calculation of the free energy for both the solid
and liquid phases. We have also examined the corresponding
crystal structure under confinement. The observed crystal

structures and the plane of orientation are similar to that seen
for LJ fluids confined in slit pores.33 Figure 7 presents the side
views and top views of the crystal structures, for various pores
widths. As shown in Figure 7, the plane of orientation is akin to
the FCC planes, which is also observed for LJ fluids in slit
confinement.33 This is also confirmed by Figure 8, which
presents a comparison of crystal structures between confined LJ
and dipolar fluids. The structure is more or less unchanged
within the range of the pore size considered in this work.
In-plane bond orientational order parameters(ψ4/ψ6) are

determined as described in our previous work.33,34 Figure 9
presents the comparison of in-plane bond orientatonal order
parameter between LJ and Stockmayer fluids in a slit pore of
width, H = 8, as a function of temperature. The ψ6 values of the
confined Stockmayer fluid are always higher than ψ4 (see Table
2), for all the layers, indicating higher propensity of triangular
or hexagonal symmetry in the crystal plane. Interestingly, the
inner layer of the confined Stockmayer fluid is well ordered,
which is contradictory to that seen for the confined LJ fluids.49

This is clearly indicated by the order parameter values, which is
more or less similar to that of the contact layer or the second
layer. On the other hand, ψ6 values for inner layers of the
confined LJ fluid is less in comparison to that of the contact
layer, second layer or third layer. For all the cases, crystal
structures of confined Stockmayer solids are rich in triangular

Table 1. Estimated True Thermodynamic Melting Temperature, Tm, and Various Contributions to the Gibbs Free Energy, for
Different Pore Sizes, H, with Variable Wall−fluid Interaction Strength at an Approximate Melting Temperature (Tam)

a

H Tam ρL ρS ΔAex ΔAid PΔV ΔG Tm

bulk μ = 1.0, P = 0
0.600 0.931 1.007 −137.9(7) 97.109 0.00 −40.777 0.660(6)

bulk μ = 1.0, P = 1
0.600 0.951 1.009 21.6(2) 72.370 −123.113 −29.144 0.674(5)

wall (LJ9−3), μ = 1, εwf = 0.4348, α = 2.32
20 0.650 0.945 1.008 −111(3) 604.003 −1014832 −522.149 0.724(3)
16 0.675 0.934 1.017 −441.9(22) 583.221 −886.703 −745.457 0.753(3)
12 0.800 0.868 0.976 −43.9(14) 717.996 −43.916 −301.119 0.818(1)
10 0.775 0.901 0.990 −53.0(7) 420.267 −53.079 −205.406 0.790(1)
8 0.800 0.903 1.015 −15.8(8) 523.060 −15.764 −175.966 0.834(1)
7 0.825 0.890 1.027 −39.0(5) 609.560 −773.344 −202.805 0.781(2)
6 0.775 0.931 1.058 90.9(6) 456.137 −593.325 −46.215 0.797(1)

aΔG denotes the Gibbs free energy difference at Tam. ρL and ρS represent corresponding densities of liquid and solid respectively at Tam.

Figure 5. Relative Gibbs free energy as a function of temperature for
the bulk dipolar system at zero pressure constructed from MHR. Both
branches are relative to the solid reference state. Figure 6. (a) Local density (ρL) as a function of pore distance from

the center of the pore for H = 8 for the quenching case. (b)
Comparison of local density profile for the solid and the liquid phases
at Tam = 0.80.
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symmetry, which is in-line with that observed for confined LJ
solids.33For example, for H = 8 all the 8 layers have triangular
symmetry and is represented by 8T. Though we present values
of the contact layer, other layers also follow the same trend.
The bond orientational order parameters and the symmetry in
the crystal structures for various wall separations are
summarized in Table 2. Figure 9 suggests that the generic
behavior of all the layers is similar for both confined LJ and
Stockmayer fluids. A very steep drop in ψ6 values, for both the
cases, are observed between T = 0.825 to 0.85. This behavior
suggests that all molecular layers undergo a transition from
ordered solid phase to isotropic liquid phase in between T =
0.825 and 0.85. Thus, conclusion on true thermodynamic
melting temperature based on the bond orientation order
parameter is questionable.
In order to determine the true thermodynamic melting

temperature of confined dipolar fluid, we have used a
combination of Grochola’s three stages pseudo-supercritical
transformation path and multiple histogram reweighting
(MHR) technique. The Gibbs free energy curves are
constructed taking T = 0.80 as an intermediate point of the
metastable region. As described previously, simulations are

performed at nine different temperatures, taking approximate
melting temperature as the middle/central point of nine
simulations. For each temperature, two sets of simulations are
performed: one for the heating case and another for the
quenching case, resulting in 18 histograms. The relative Gibbs
free energy curves for both the phases are generated by
collecting the histograms separately for solid and liquid phases.
The Gibbs free energy curves are constructed with respect to
the lowest temperature state point for each phase similar to that
for the bulk case (see Figure 1). The thermodynamic
integration is performed at an approximate melting temper-
ature, Tam = 0.80. The box lengths are chosen in such a way that
Pxx = Pyy = 1 remains constant at the beginning of the stage a
and at the end of the stage c.33 Plots of ⟨∂U/∂λ⟩NVTλ as a
function of λ for the three stages of thermodynamic integration
are continuous and integrable for all the three steps. Further, in
this work, we have also checked the reversibility of the
considered thermodynamic path. For all three cases, error bars
are of the order of symbol size. The different contributions to
the Gibbs free energy for all the wall separations are
summarized in Table1.

Figure 7. Snapshots of crystal structures (side and top views) of dipolar systems for different pores at T = 0.70.
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Once the Gibbs free energy difference of two phases is
determined at an approximate melting temperature, the Gibbs
free energy curve relative to a solid reference state is evaluated

as per ref 38. Using the relative free energy between the
crystalline and liquid phases at a single point, the free energy
difference between crystalline and liquid phases can be
evaluated for all other points. By determining ΔG in this way
over a range of temperatures, a ΔG vs temperature curve can be
produced, and the temperature where ΔG is zero produces a
single coexistence point or the thermodynamic melting
temperature. In order to assess the system size effect, we
simulated a system with 2-fold increase in the cross-section area
and the number of particles (N = 12672). However, we do not
find any significant change in the melting temperature. The
estimated true thermodynamic melting temperatures for
different pore sizes are summarized in Table 1. It should be
noted that melting temperature of the Stockmayer fluid as
calculated in this work is lower than that of the LJ fluid.33 This
primarily is attributed to the lower cut off distance, employed in
this work, for the Stockmayer fluid (Rc = 2.6σff) compared to
that for the LJ fluid (Rc = 5σf f).
Figure 10 presents a plot of the scaled shift in Tm [(Tmc −

Tmb)/Tmb] against the inverse of the wall separation, where Tmb

is the bulk melting temperature and Tmc is the melting
temperature under confinement. In this work, we have
observed an elevation of melting temperature of confined
Stockmayer fluid for all the pore sizes studied in this work, as
shown in Figure 10. However, there is no specific relationship
between the melting temperature and the slit separation. In
fact, the melting temperature of the confined Stockmayer fluid
is oscillatory in nature, as also found by previous workers via
different methods albeit for the Lennard-Jones fluid.33,48 The
elevation in the melting temperature in attractive pores, as seen
in this work, is also observed in other studies.33,50−52 In our
previous works,33,48 we have reported that the kinetic melting
temperature displays both elevation and depression behavior
with wall separation. Interestingly, in this work we observe only

Figure 8. Comparison of in-plane orientation of crystal structures between confined LJ and dipolar fluids (top view).

Figure 9. Average in-plane orientational order parameters for
Stockmayer and LJ fluids are presented as a function temperature
for H = 8. Vertical dashed line indicates sudden drop in ψ6 at around
melting temperature. Error bar is estimated using the block-averaging
method.

Table 2. Crystal Structures and Orientation Order
Parameters with Wall Separation, Where nT Represents n
Layers in Triangular Symmetry

H structures Ψ4 Ψ6

6 6T 0.037 0.567
7 7T 0.176 0.426
8 8T 0.201 0.776
10 10T 0.025 0.321
12 12T 0.172 0.842
16 16T 0.056 0.447
20 20T 0.146 0.379
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elevation in the thermodynamic melting temperature with
respect to that of the bulk solid.
It is noted that the oscillatory behavior in the melting

temperature is observed for narrow pores, which starts to decay
at around pore size of H = 12 for the confined Stockmayer
fluid. Subsequently, the behavior is linear with the pore size for
H > 12. The behavior seen in the shift in the melting behavior
of the confined dipolar fluid is in line with that observed for the
confined LJ fluids. Based on the data, as shown in Figure 10, we
expect that the confinement effects will completely disappear at
a pore size H ∼ 30, which is slightly higher than that for LJ
fluids (H ∼ 25) in slit confinement.33 The oscillatory behavior
in the melting temperature seen for Lennard-Jones and
Stockmayer fluids33,48 can be an indicative of a generic behavior
of confined solids in narrow pores. However, more work is
needed in order to generalize the melting/freezing behavior for
confined fluids in narrow pores.

5. CONCLUSION
In this work, we demonstrate the melting behavior of the
Stockmayer fluid, with μ2 = 1, confined in strongly attractive slit
pores of different pore sizes in addition to the bulk fluid. The
thermodynamic melting temperatures of confined dipolar fluids
are evaluated using a pseudo-supercritical transformation path
connecting the solid phase and the liquid phase without the
first-order phase transition. The method is successfully
implemented for dipolar fluids to obtain the solid−liquid
coexistence under confinement. The method is computationally
intensive as the Ewald summation technique is employed for
the long-range dipole−dipole interaction. However, the method
employed is advantageous over other existing methods, since
separate evaluation of the free energy of each phase is not
required. The melting temperature of the bulk solid at P = 1 is
higher in comparison to that at zero pressure. The melting
temperatures of confined Stockmayer solid at lower pore sizes
are oscillatory in nature. The oscillatory nature of melting
temperature with pore size is confirmed with an accurate
estimate of the true melting temperature. However, at higher
pores size, H > 12, the shift in melting temperature is in line
with the prediction of the Gibbs−Thomson equation.
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